A remote-sensing and modeling perspective of ice crystals in deep convective clouds

Bastiaan van Diedenhoven (GISS lunch seminar)

Ann Fridlind & Andrew Ackerman

Deep convective clouds

Deep convective clouds

Net Forcing

- Shortwave/longwave cloud forcing depends on
 - Cloud top temperature
 - Optical thickness
 - Ice crystal sizes
 - Ice crystal shapes ('Habits')
 - Glaciation temperatures
 - •

Fig. 2. Frequency distribution (in percentage) of ERBE net cloud radiative forcing for 10 W m⁻² interval for Jan, Apr, Jul, and Oct. Period: 1985–88. Region: 0°–30°N, 60°–120°E.

Ice formation in deep convective clouds

- - Direct freezing of droplets
 - T < -38 C
- Homogeneous ice formation
 Heterogeneous ice formation
 - Ice formation induced by ice nuclei (IN)
 - 0? C > T > -38 C

Ice crystals in Tropical deep convection

- CPI images
 - Many irregular shapes
 - Some more 'pristine' rosettes in aged anvil

Objectives

- Ice formation not well understood
- Use cloud-resolving modeling studies to investigate
 - Ice formation processes
 - Sensitivity to IN and CCN concentrations
- Provide observational constraints on
 - Glaciation temperatures
 - Ice crystal sizes
 - Ice crystal shapes ('Habits')

- The Tropical Warm Pool— International Cloud Experiment
- Near Darwin, Australia
- From January 20 through February 13, 2006
 - Active monsoon 20-24 Jan.
 - Suppressed 25 Jan 3 Feb.
 - Monsoon break >3 Feb.
- Over ocean, weak daily cycle

Geostationary MTSAT IR measurements

- Active monsoon16-24 Jan.
- Suppressed25 Jan 3Feb.
- Monsoonbreak > 3Feb.

MODIS brightness temperature and optical thickness

- Within 5° from
 Darwin
- Over sea
- Active Monsoon

Cloud phase information from POLDER-PARASOL

- Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar
- Was in A-train (2004-2009 ran out of fuel)
- 10 x 10 km² resolution
- Provides reflectivity at 9
 wavelengths at 13-15
 viewing angles
- Polarized reflection at 490, 670 & 865 nm

Polarized reflectance

- Polder measures Stokes parameters I, Q & U
- Polarized reflectance

$$R_p(\mu) = \frac{\pi \sqrt{Q(\mu)^2 + U(\mu)^2}}{\mu_0 F_{\odot}},$$

(F_0 is incoming Solar, μ_0 is cosine of solar zenith angle)

- Dominated by low order scattering
- Saturated for cloud optical thickness $> \sim 2$
- Probes cloud top

Cloud phase information from POLDER-PARASOL

- Directional polarized reflectance (R_p)
- Phase retrieval
 - Droplets show rainbow feature in R_p at 140 degrees
 - No/weak structure in Rp due to ice

POLDER Liquid index

- Fit straight line through 120°-160° measurements
- Ice index =Mean(|fit-measurement|)
- Straight-forward to simulate from model

Fig. 2. Illustration of the definition of the liquid index (LI) for an liquid-topped cloud (a) and ice-topped cloud (b). See text for explanation.

Physical interpretation of liquid index

- Liquid index
 - Indicates to what degree liquid is *obscured* by ice above
 - ~3 for pure water clouds
 - ~0 for pure ice clouds or ice *topped* clouds

Liquid index for TWP-ICE active

monsoon

Ice shape information from POLDER-PARASOL

- Polarized reflectance depends on ice shape
- Most important parameters are:
 - Aspect ratio of ice crystal (components)
 - Small-scale roughness

Polarized phase function

- Structures decrease with increasing roughness
- Scattering <120° increases with increasingly extreme aspect ratio

Ice shape information from POLDER-PARASOL

- Severely roughened ice
- Compact AR~0.7 crystals in cold clouds (homogeneous ice formation?)
- More extreme AR in warmer clouds (heterogeneous ice formation?)

MODIS Aqua ice crystal effective radius and cloud optical thickness

$$R_{eff} = \frac{3}{4} \frac{\int_0^\infty V(D) N(D) \ dD}{\int_0^\infty A_p(D) N(D) \ dD} ,$$

- Ice crystal effective radius
- cloud optical thickness

from 0.87 µm (non-absorbing) and 2.13 µm (absorbing)

MODIS ice effective radius and 2.13 um reflectance

DHARMA CRM Simulations

(Ackerman et al., Nature 2004; Fridlind et al, JGR 2007)

- Grid
 - $176 \times 176 \times 20 \text{ km}^3 \text{ domain}$
 - 192 × 192 × 96 grid points (for now)
- Microphysics
 - Size resolved microphysics in 36 bins
 - Fluffy aggregates and dense graupel ice types
 - Ice properties modeled using (Böhm et al., Atm. Res. 1992)
 - Mass-Diameter relationships (Mitchell, *JAS*, 1996)
 - Area-Diameter relationships (Mitchell, *JAS*, 1996)
 - Aspect ratios (Korolev & Isaac, *JAS*, 2003)

Simulations

- Simulations with different ice formation
 - 1. Diagnostic ice nuclei: $N_{ice} + N_{IN} = 30 L^{-1}$
 - 2. Prognostic: ice nuclei consumed (nudged at 6 h time scale)
- Moderately strong monsoon event (19-20 Jan.)
- 20-hour simulations (after 36-hour spinup with bulk microphysics)
- Sampled every hour

Model simulations

Prognostic IN

Domain averages vs time

Brightness temperatures and optical thickness

Liquid index for TWP-ICE active monsoon

Simulated Liquid index

- Liquid indices simulated from model
- Using forward calculations of 0.86 µm polarized reflectances
- Too much ice at T > -20 C (spinup problems?)
- Super-cooled liquid at
 T~ -30 C

MODIS ice effective radius and 2.13 um reflectance

Evaluating modeled effective radius

- Definitions of ice effective radius vary
- Most models predict total ice mass, not effective radius

$$R_{eff} = \frac{3}{4} \frac{\int_0^\infty V(D)N(D) \ dD}{\int_0^\infty A_p(D)N(D) \ dD} ,$$

- Retrieval represents R_{eff} somewhere in cloud top, but where?
- Retrieval of effective radius depends on ice habit assumed
- R_{eff} of equal volume sphere $>> R_{eff}$ real ice!

Calculation of effective radius from

model

- DHARMA model uses 36 bins with specified
 - Maximum diameter
 - Mass
 - Area
- Same assumptions used for microphysics and optical properties

 $D_{\text{eff}} = 3/2$ V/A

Calculation of effective radius from model

- Retrieval of ice R_{eff} represent the effective radii somewhere in the top of the cloud, but where?
- Past studies show retrieval is mostly sensitive to first 2 optical depths

Retrieval of effective radius depends on ice habit assumed

$$R_{eff} = \frac{3}{4} \frac{\int_0^\infty V(D)N(D) \ dD}{\int_0^\infty A_p(D)N(D) \ dD} ,$$

 Overcome problems by forward simulating 2.13 µm reflectance with known ice habit

Evaluation of model Reff

- R_{eff} integrated over first 2 optical depths
- Simulated 2.13µm reflectances
 - AR=0.7
 - Roughness = 0.6
- Sizes not sensitive to IN treatment (homogeneous nucleation dominates?)

2.13 sensitivity to ice aspect ratio

Conclusions measurements

- Glaciation
 - Liquid at T > -20 C
 - Liquid/Mixed/Ice at -20 C > T > -35 C
 - Ice at T < -40 C
- Ice shapes
 - Compact rough crystals at T < -40 C
 - More extreme aspect ratios at T > -40 C
- Ice sizes
 - $18-28 \ \mu m \ at T < -40 \ C$
 - $24-35 \ \mu m \ at T > -40 \ C$

Conclusions model

- Model evaluated using forward calculations of
 - Brightness temperatures
 - 0.86 µm polarized reflectances
 - 2.13 µm reflectances
- Glaciation
 - Super-cooled liquid up to $T\sim$ -30 C (similar to measurements)
 - Too much ice 0 C > T > -20 C (depending on IN treatment; spinup?)
- Ice sizes
 - \bullet R_{eff} 5-10 um too small
 - Sizes in cold tops not sensitive to IN treatment
 - Some too large ice in warm tops (Spinup?)
- \bullet Calculated $R_{\rm eff}$ and simulated 2.13 μm reflectances give similar results

 $2.13~\mu m$ Reflectance

Effective radius $[\mu m]$

